مباحثی بر فضاهای مرتبط با رده ای خاص از فضاهای همگن

thesis
abstract

فرض کنید $g$ یک گروه موضعا فشرده باشد.در این صورت $g$ دارای یک اندازه هار منحصر به فرد است. فضاهای توابع، که روی یک گروه موضعاً فشرده $g$ تعریف شده اند خواص قابل توجهی داشته و در آنالیز هارمونیک از اهمیت خاصی برخوردارند، از جمله $l^1(g)$, $l^p(g)$, $b(g)$ و $a(g)$. در این پایان نامه سعی شده است فضاهای تابعی متعارفی که بر یک گروه موضعاً فشرده تعریف شده اند بطور مشابه بر یک فضای همگن $g/h$ نیز تعریف شوند به گونه ای که ویژگی های فضای تابعی تا حد امکان حفظ شوند. $l^p(g)$ یک ساختار $l^1(g)$ -مدول چپ باناخ با یک همانی تقریبی دارد. همچنین، $l^1(g)$ یک ایده ال دو طرفه بسته از $m(g)$ می باشد،که $m(g)$ فضای تمام اندازه های مختلط رادون بر $g$ است. $b(g)$ یک جبر باناخ جابجایی است که $a(g)$ به عنوان یک ایده ال بسته از آن می باشد و همچنین $a(g)^*= ext{vn}(g)$. اکنون اگر $h$ یک زیر گروه بسته از گروه توپولوژیک موضعاً فشرده $g$ باشد، فضای همگن $g/h$ با توپولوژی خارج قسمتی یک فضای توپولوژیک موضعاً فشرده خواهد بود. فضای همگن $g/h$ یک اندازه بطور قوی شبه ناوردا مانند $mu$ دارد. می توان نشان داد $l^p(g/h,mu)$ یک ساختار $l^1(g)$ -مدول چپ باناخ دارد که دارای یک همانی تقریبی چپ نیز می باشد. بعلاوه در حالتی که $h$ فشرده و $mu$ بطور نسبی ناورداست، ضرب و برگشتی بر $l^1(g/h)$ تعریف می شود که آن را به یک جبر باناخ برگشتی تبدیل می کند. همچنین با در نظر گرفتن جبر فوریه و فوریه استیلیتجس که توسط ایمارد footnote{p.eymard} روی گروه $g$ معرفی شده است سعی داریم این دو مجموعه از توابع را روی فضای همگن $g/h$ به گونه ای تعمیم دهیم که تا حد امکان ویژگی هایی که برای جبر فوریه و فوریه استیلیتجس بیان کردیم قابل توسیع به این مجموعه های ساخته شده باشد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

بررسی ویژگی هندسی رده ایی از فضاهای همگن شبه ریمانی

درمیان متریک های شبه ریمانی دسته خاصی ازاین متریکها که به متریکهای واکر معروفند، ازاهمیت ویژه ایی برخورداربوده وبسیاری ازتفاوتهای هندسه های ریمانی وشبه ریمانی دربین این گونه متریکها مشهوداست.سوال طبیعی که اینجاممکن است پیش بیایداین است که آیا یک متریک شبه ریمانی والکراست یاخیر. لذا بررسی متریکهای والکر روی فضاهای همگن از لحظه پیدایش به بعد همیشه یک مساله قابل توجه بوده است. سئوال اصلی این تحقیق...

مباحثی در فضاهای ناارشمیدسی

می دانیم اگر xوyدو عدد حقیقی باشند انگاه یک عدد طبیعی n با خاصیت nx>y وجود دارد،فضاهایی با خاصیت مذکور را فضاهای ارشمیدسی می نامند،اما فضاهایی نیز وجود دارند که این خاصیت برای آنها برقرار نمی باشد.در واقع تمام تواعد و اصول هندسه ارشمیدسی در مورد خطوط مستقیم،مثلث ها و اعداد در این فضاها متناقض می باشد،به آن ها فضاهای ناارشمیدسی می گوییم.ریاضی دان بسیاری به بررسی اصول وقضایایی که قبلا در فضای ارش...

بررسی شاخص های مطلوب مرتبط با فضاهای سکونتی سالمندان

در حال حاضر می‌بایست به جستجوی راهکارهایی برای بهبود مسکن سالمندان به منظور ارتقای امید به زندگی و سلامت آنان در عصر حاضر ایران بود. منظور از مسکن به عنوان یکی از اصلی ترین و ابتدایی ترین نیازهای انسان، صرفاً یک سرپناه نیست. مفهوم سکونت فراتر از استقرار در یک فضای بسته است. این مطالعه به بررسی عوامل مرتبط با افزایش امید به زندگی سالمندان در فضاهای کالبدی سالمندان پرداخته و مسکن‌ متناسب با آنان د...

full text

ارتباط شادکامی و حیطه‌های خاص امیدواری سالمندان با میزان استفاده از فضاهای شهری

سالمندان به دلیل کهولت و کاهش توانایی­هایشان باید تحت توجه و حمایت قرار گیرند و این در حالی است که توجه به سطح شادکامی و امیدواری در سالمندان حائز اهمیت ویژه­ای است. پژوهش حاضر با هدف تعیین رابطه ­ی بین شادکامی و حیطه­ های خاص امیدواری با میزان بهره ­برداری از فضاهای شهری در سالمندان انجام شد. تعداد­100­ فرد سالمند شهر بجنورد در قالب دو گروه 50­ نفری استفاده مکرر و عدم استفاده از پارک­ ها و فضا...

full text

خواص هندسی فضاهای همگن

مطالعه ی خواص هندسی فضاهای همگن و گروه های لی یکی از زمینه های تحقیقاتی پرجاذبه در هندسه ی دیفرانسیل است که از جمله ی این خواص می توان به مطالعه ی ژئودزی های همگن, ساختارهای مختلط و اتصالی پایا, سولیتن ریچی پایا و غیره اشاره نمود که دارای کاربردهای متعددی در فیزیک و مکانیک هستند. از این رو در این رساله ابتدا یک کلاس از گروه های لی حل پذیر ‎$m^{2n+1}$‎ را در نظر می گیریم که در سال ‎1980‎ توسط ‎ ...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023